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ABSTRACT: Machine vision based analysis provides a novel technol-

ogy for froth flotation monitoring. Froth images collected are charac-

terized by fully occupied bubbles with different size and shape under

various illuminations. Convex bubbles lead to the formation of white
spots that seriously affect froth color measurement. In this article,

specular highlights are detected and preprocessed so as to estimate

underlying color of white spots region. Because of the fact that color
information is believed to be related to flotation performance, there-

fore, after the application of highlight inpainting, multivariate image

analysis is proposed to extract color features, which are further related

to mineral grades by a orthogonal least square regression model. The
established relationship provides a promising empirical model to pre-

dict mineral grade, which is a significant indicator for flotation perform-

ance. Experimental results show that, when compared with traditional

methods, the proposed algorithm can achieve a robust color measure-
ment and predict mineral concentration effectively. VVC 2009 Wiley

Periodicals, Inc. Int J Imaging Syst Technol, 19, 316–322, 2009; Published online

in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20208
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I. INTRODUCTION

Flotation is an indispensable technology to effectively utilize the

low-graded ore resources. It aims to separate valuable minerals

from useless materials or other minerals through complex physio-

chemical processes. By the addition of chemicals and mixture of

air, valuable minerals are made hydrophobic to attach to the air

bubbles, which rise up to the froth layer on the top of slurry, where

the upgraded valuable minerals are collected. Flotation is a multi-

variate process influenced by many factors, such as reagent doses of

chemicals, air flow, feed ore grade, grinded particle size, etc. The

control and modeling of flotation processes are challenging due to

the inherently chaotic nature of the underlying microscopic phe-

nomena. At present, the control of flotation process depends heavily

on human operators’ various experience by viewing the visual

appearance of the froth. Lack of online reliable sensors and subjec-

tive problems caused by operator’s limitation pose additional diffi-

culties. Recent developments in digital image processing provide

new opportunities to gain a better understanding of the industrial

flotation process (Moolman et al., 1996). As a soft measurement in

mineral flotation process, image processing sensors can provide

quantitative measures of froth characteristics, objective description

of froth appearance, and nonintrusive real time monitoring with lit-

tle maintenance.

It is widely known that the froth characteristics such as the

color, bubble structure, morphology, and speed are closely related,

in a quantitative way, to mineral grade (concentrations), process

status and recovery, respectively. Numerous reported literatures are

devoted to the extraction of froth image features like texture color

(Bartolacci et al., 2006), bubble size (Chunhua et al., 2009), froth

speed (Holtham and Nguyen, 2002), and bubble load (Ventura-Me-

dina and Cilliers, 2000). Color and texture information is believed

to strongly associate with mineral concentration. Early work

applied the image gray intensity and a measure of the relative red

on 35 mm film captured static froth images, derived from the RGB

(red, green, blue) color space (Hargrave and Hall, 1997). Others

explored froth color discriminability in various color space like

RGB, HSV (hue, saturation, value), and HSI (hue, saturation, inten-

sity) ( Bonifazi et al., 2001). Duchesne proposed the application of

multivariate image analysis (MIA) to predict the concentrate grade

and achieved good prediction results (Duchesne et al., 2003). Barto-

lacci reported several image processing methodologies to analyze

froth color and texture, including the famous MIA, gray-level co-

occurrence matrix (GLCM), and wavelet transform analysis (WTA)

methods (Bartolacci et al., 2006). It is claimed that MIA method

captures the froth variation relatively better than WTA method. An

improved version of MIA called multiresolutional MIA (MR-MIA

II) was developed to extract relevant color information and detect

clear windows and black holes in the froth images (Liu et al.,

2005). A more recent research tried to design models and controller

based on MR-MIA analysis (Liu and MacGregor, 2008).
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Bubble images collected from industry field show that large

amount of highlight region (white spots) appears on the top of bub-

bles, which not only affects accurate color feature extraction, but

also deteriorates the segmentation results due to strong edges

caused by spotlights. It is a new perspective to remove the highlight

artifacts, which can help the reconstruction of underlying color of

white spots and benefit the segmentation performance by overcom-

ing oversegmentation effects caused by uneven illumination. A

newly reported research on the robustness of color measurement

emphasizes that the effect of lighting on froth color measurement is

un-negligible, and a LAB color space was proposed to measure the

luminosity and chromaticity (Reddick et al., 2009).

This work aims to characterize mineral flotation froth through

digital image processing techniques and predict mineral concentra-

tion based on robust color measurement. An effective preprocessing

scheme is carried out on each collected bubble image to remove

specular highlights and estimate accurate color of bubble. The corre-

lation between the intensities of image spectra is explored by using

MIA. Based on the principle component loading coefficients of RGB

images, an orthogonal least square (OLS) regression model is built

for the purpose of predicting the mineral grade. Industrial case study

reveals the efficiency and reliability of the proposed methodology.

Next section reviews the mechanism of the flotation process as

well as the introduction of experimental set-up. Section III introdu-

ces highlight detection and removal using total variation inpainting.

In Section IV, color spectral information is studied and multivariate

statistical analysis is proposed to extract loading coefficients of

color variance. Section V presents the experimental results and dis-

cussion. Conclusion is provided in the last section.

II. FLOTATION PROCESS AND EXPERIMENTAL SET-UP

The process of froth flotation entails crushing and grinding of the

raw ore to a fine size. The fine particles are mixed with water and

the slurry (pulp) is fed in the flotation cells, which agitate the mix-

ture and introduce air continuously to form a large number of bub-

bles as shown in Figure 1.

Experiments are carried out on industrial scale in a bauxite flota-

tion plant of China. The test set-up consists of RGB cameras with

49 mm lens placed �110 cm above the surface of flotation froth

layer. Froth image sequences, derived from videos captured at the

rate of 7.5 frames/s, are collected from individual flotation cell with

a volume of 16 m3. The window size of each image in a cell is 12

3 9 cm2. It should be noticed that how to choose the specific posi-

tion of surface for the collection is crucial to capture high-quality

images. Some researchers chose the position for installing camera

near the cell lip focusing on the measurement of velocity. For froth

with its size varying from 1 mm to 20 mm, we explored other possi-

ble positions to acquire qualified images which are significant for

the subsequent processing like bubble structure and color extrac-

tion. On the opposite side of the cell lip, a position near the impeller

seems to be a better choice for two reasons: the use of froth dis-

charge paddles near the cell lip will agitate bubbles around

(Moolman et al., 1996), so positions can be chosen far away from

cell lips to avoid much bubble collision and keep more mineral par-

ticles attached on itself; on the other hand, bubbles are relatively

‘‘fresh’’ and newly rising with less fracture caused by the pressing

among bubbles. Ambient light is prevented from reflecting in by

iron cover on the cell top. The camera is mounted above the target

cell, with video output transmitted by optic fiber to the digital com-

puter, shown in Figure 2.

As discovered, froth images collected from industry field show

that: (1) a froth image is fully occupied by bubbles, in normal cases,

with no void space or background region between bubbles; (2) the

illumination on bubble surface is uneven; (3) each bubble has a con-

vex shape which leads to the appearance of white spots, generally on

the top if the incident ray is from the vertical direction of froth layer.

Human operators usually check the feed ore grade (input) in

rougher cells, tail grade (output) in scavenger cells, and cleaning

grade (product) in cleaning cells (Fig. 3). The operators take control

actions mainly based on feedback of minerals grade measured by

X-ray fluorescence (XRF) analyzer or titration. The sampling (10–

20 min) and titration of grade measurement (2–3 h) take long time

to give prompt feedback for process monitoring and control. To

estimate the mineral grade and get the whole picture of the flotation

process, it is agreed that bubble images should be acquired from

rougher, scavenging, and cleaning cells by installing the cameras in

positions as Figure 3 shows.

III. HIGHLIGHT REMOVAL

When recording natural scene images, highlights due to specular

reflection are often taken into consideration, especially in the case

that the underlying color or texture is of importance for image anal-

yses. The highlight problem becomes even serious as the light

source and camera position are along the identical direction, in this

work, which is vertical to top froth phase. As observed, the col-

lected bubble images are found to have various uneven white high-

light spots, which results in the occlusion of underlying color

Figure 1. Scheme of individual flotation cell. [Color figure can be
viewed in the online issue, which is available at www.interscience.

wiley.com.]

Figure 2. Image acquisition hardware configuration. [Color figure
can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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information. Although various literatures consider color measure-

ment as a crucial feature to be connected with the mineral grade, a

few considered the artifacts caused by highlights, which is also

known as color constancy problem in computer vision field.

Assuming that bubble images are not overimposed when col-

lected, highlights can be detected simply in HSV color space by

thresholds on saturation and value (Hue component is much insensi-

tive to light variances). The obtained highlight region is further

processed by region growing method.

On the basis of Shafer’s dichromatic reflection model (Shafer,

1985) to remove highlight for a single-image case (Klinker, 1990),

Klinker proved that every pixel from dielectric materials can be

described as a linear combination of diffuse color and highlight

color (Klinker et al., 1987). And all the diffuse and highlight pixels

form linear clusters in a T-shape. Highlight can be removed by pro-

jecting highlight colors onto the diffuse vector to compute underly-

ing diffuse color. Highlight cluster, however, is often skewed due to

surface roughness and image geometry. Reliable estimation of real

color for natural images can hardly be achieved (Norvak and

Shafer, 1992).

From another perspective, highlight removal has a close con-

nection with image inpainting. The objective of inpainting is to

fill the missing and damaged region by propagating the surround-

ing information and structure (Bertalmio et al., 2000; Barcelos

and Batista, 2008). Consider that our images have large amount

of highlight regions on the top of bubbles to be filled in. Total

variation (TV) inpainting model proposed by Chan and Shen

(2002) can give smooth interpolation. The rationale behind is that

the inpainting can be achieved by minimizing the following regu-

larity function over the highlight region D using adjacent pixels

in region E (Fig. 4),

RðuÞ ¼
Z
E[D

rjrujdxdy; ð1Þ

under the denoizing constraint on E

1

AreaðEÞ
Z
E

ju� u0j2dxdy ¼ r2; ð2Þ

where u is missing image value to be inpainted, r is an appropriate

real function which is nonnegative for nonnegative inputs, u0 is

contaminated by homogeneous Gaussian white noise, and r is the

standard deviation of white noise. Using the Lagrange multiplier,

constrained variational problem (1)–(2) is solved by minimizing

Jl uð Þ ¼
Z
E[D

jrujdxdyþ l
2

Z
E

ju� u0j2dxdy; ð3Þ

where l is the Lagrange multiplier.

The Euler-Lagrange equation for the energy functional Jl is

�r �
� ru

jruj
�
þ leðu� u0Þ ¼ 0; ð4Þ

where

le ¼ l; ðx; yÞ 2 E
0; ðx; yÞ 2 D

:

�

The numerical scheme for the TV inpainting model is designed.

As shown in Figure 5, at a given target pixel O, let L 5 {E, N, W,
S} denote its four adjacent pixels and {e, n, w, s} denote the corre-

sponding four midway points, which are not digital image pixels.

Let v ¼ ðv1; v2Þ ¼ ru
jruj. Then the divergence is discretized by central

differencing:

r � v ¼ @v1

@x
þ @v2

@y
� v1e � v1w

h
þ v2n � v2s

h
; ð5Þ

where the grid size h is taken to be 1. Take the midpoint e as an

example, approximation at midway point is calculated by

v1e ¼
1

rue

@u

@x

� �
e

� 1

jruej
uE � uO

h
; ð6Þ

Figure 3. Flowchart of flotation circuit and installing positions of

RGB cameras.

Figure 4. Inpainting domain and extended domain.

Figure 5. A target pixel O and its neighbors.
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jruej � 1

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuE � uOÞ2 þ ðuNE þ uN � uS � uSEÞ=4½ �2

q
; ð7Þ

Therefore, (4) is discretized to

X
P2K

1

jrupj ðuO � uPÞ þ leðOÞðuO � u0OÞ ¼ 0; ð8Þ

Define

wP ¼ 1

jrupj ;P 2 K; ð9Þ

hOP ¼ wPP
P2K wp þ le Oð Þ ; ð10Þ

hOO ¼ leðOÞP
P2K wp þ leðOÞ : ð11Þ

Then (8) becomes

uO ¼
X

P2KhOPuP þ hOOu
0
O: ð12Þ

Adopting the Gauss-Jacobi iteration scheme, at each step n, un21

can be updated to un by

u
ðnÞ
O ¼

X
P2Kh

ðn�1Þ
OP u

ðn�1Þ
P þ h

ðn�1Þ
OO u

ðn�1Þ
O ; ð13Þ

As hOP 1 hOO 5 1, formula (12) is stable.

According to (13), the highlight regions can be filled by execut-

ing the following steps:

1. Read bubble image I and detect its corresponding highlight

regions H0 as the mask template;

2. For each pixel (x, y) in I falling into the mask domain H0,

execute steps 3–5;

3. Calculate the midway points’ first order derivative ve
1 and

gradient absolute value |!ue|;
4. For pixel (x, y) inside the mask domain H0, set le (O) to be 0;
5. Calculate hOP and hOO to update pixels in region H0, and

save the new pixel value to original bubble image;

6. If the difference between the update image and original

image is smaller than a set threshold, recursively carry out

steps 2–5, otherwise, exit.

IV. MULTIVARIATE STATISTICAL ANALYSIS

The concept of the MIA was first proposed by Esbensen and Geladi

(1989). Duchesne applied MIA for prediction of the concentrate

grade (Duchesne, 2003). Later, Bartolacci reported the application

of MIA to image analysis of copper flotation froth (Bartolacci et al.,

2006). It is a multivariate statistical method considering the entire

froth image as the model input and extracting the color variance for

the prediction of mineral grade.

Assume that the RGB image X can be expressed as linear combi-

nation of N distinct features hi, where 1 � i � N

X ¼
XN
i¼1

/iðXÞ � hi: ð14Þ

The features span a relatively low-dimensional subspace where all

the observed input can be projected onto by using the principal

components of the data correlation matrix as features.

A RGB color image is viewed as a three-way array of data, with

two spatial dimensions being geometrical coordinates and the third

dimension being the spectral coordinate corresponding to the light

intensity recorded by the camera in the red, green, and blue chan-

nels. Generally, the RGB image X (M 3 N 3 3) is unfolded into a

two-way matrix X. The columns of X correspond to the red, green,

and blue color intensities for each pixel of image, whereas each row

corresponds to a particular pixel of the image. PCA is then applied

to matrix X:

�X ¼
Xk
i¼1

Ti � pTi þ E; ð15Þ

where K is the number of principal components (PCs), Ti is the

score vectors (score images), and pi is the loading vectors, i 5
1,. . ., K. Matrix E is the decomposition residual array and is zero

when all PCs are used (K 5 3 in this case). The decomposition of

each unfolded image yields a series of loading vectors pi, which are

linear combination of the original RGB intensities explaining most

of the color variations across the image and can be used directly as

color features. Each loading vector pi contains three weights corre-

sponding to red, green, and blue colors. The first two PCs are con-

sidered in this work. For each loading vector pi, the first two vectors

p1 and p2 are chosen to represent color variations because they

explained more than 99% of variance in color intensities. Thus, six

features are extracted to represent color variations.

To visually demonstrate the decomposition of MIA, color fea-

tures are extracted for two typical rougher bubble images sized 600

3 800 pixels. Note that in Figure 6, the first loading vector p1 gives
almost equal weights to three color channels, a weighted average of

all three R, G, and B channels and its corresponding score image is

similar to the gray-scale version of a RGB image. The second load-

ing vector p2 shows a great contrast between intensity value of red

and blue. For these two different types of froth images, it is not dif-

ficult to identify the color variance by human visual system and tell

difference between one with darkish, round bubbles and the other

with reddish, uneven sized bubbles. These two types froth image

correspond to different mineral separation performance, which is

directly reflected by mineral grade. In practice, human operators of-

ten use the discriminative color as heuristic knowledge to manipu-

late the operational variables.

The loading vectors pi of image a and b are

pai ¼
0:6094 0:6341
0:5665 0:0716
0:5546 �0:7699

2
4

3
5; pbi ¼

0:7355 0:5274
0:5458 �0:0893
0:4014 �0:8449

2
4

3
5

respectively, which are plotted in Figure 6.

After applying the MIA to the images and extracting loading

coefficients, a regression model is built to establish relationship

between color features extracted from images and minerals grade so

as to predict the A/S ratio, which was usually measured by XRF an-

alyzer and calculated by QA12O3
/QSiO2

, where QA12O3
is the quality
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of Al2O3 and QSiO2
is the quality of SiO2. For each image, color fea-

tures are stored row-wise in a regression matrix X (n 3 l), where n
is the number of images used to build the model and l is the number

of color features used in the model. Y (n 3 1) corresponds to min-

eral A/S grade measurement of froth images. OLS regression was

used. It is a latent variable method defined as:

Y ¼ XW þ F; ð16Þ

where X contains the loading vectors, loading matrix W defines the

relationship between the two spaces X and Y. F contains the regres-

sion error.

V. CASE STUDY RESULTS AND DISCUSSION

Experiments covering a large range of operating conditions are car-

ried out on three different cells including rougher, scavenger, and

cleaner. Online videos and froth images with the size of 600 3 800

pixels are recorded by RGB cameras over the flotation cells in a flo-

tation industry field of China since the year 2008. Assumptions are

made that videos collected from rougher cell can reflect the status

of feed ore; videos from scavenger provide the information of tail

grade; and videos from cleaner can gave the situation of product

grade. The bubble videos are collected under the same condition

(resolution, angle, light condition, position, view scale, etc.) 24 h a

day. All the images are online collected RGB color images, with

256 intensity levels in each channel. Pulp samples are collected by

our group members at exact same time of video recording and its

corresponding A/S ratios are measured by XRF analyzer, which

takes 20 min to accomplish the sample analysis. In practice, human

operators measured the A/S ratios in the way of chemical titration

which takes more than 2 h.

After acquiring qualified bubble videos, each image is prepro-

cessed for the purpose of highlight removal. To obtain a robust

measurement of color, each frame is first enhanced by denoizing to

eliminate noise pixels with high intensities affecting highlight

detection and then processed with HSV thresholds. The threshold

region is further dilated by region growing method and then used as

a mask image. Most of the top highlight regions can be recon-

structed by total variation inpainting approach proposed in Section

II. As shown in the first row of Figure 7, the inpainted visual results

are promising. After processing the highlight reflection and recover-

ing the underlying color, MIA approach has been carried out to

extract color features. Different from the loading vectors calculated

without highlight inpainting, the loading vectors pi of image a and

b are transferred into:

pai ¼
0:6367 0:6582
0:5698 0:0507
0:5195 �0:7511

2
4

3
5; pbi ¼

0:7574 0:5263
0:5453 �0:1844
0:3591 �0:8301

2
4

3
5:

In this study, it is found that red color is generally dominant in

the original RGB bubble images compared with other colors, and

the loading vector of red channel in the corresponding 1st and 2nd

loading plots often has a big positive value. Especially, the loading

value of inpainted red channel is usually higher than the one with-

out inpainting processing. MIA with highlight inpainting prepro-

cessing can capture the color variance in a more accurate way. This

also explains the relative redness proposed by Hargrave (Hargrave

Figure 6. An illustration of MIA decomposition of typical RGB froth
image from rougher cell. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 7. Two typical reconstructed bubble images using total vari-

ation inpainting (first row) and corresponding loading vectors. [Color
figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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and Hall, 1997)) can relatively captures the discriminative color

features well between froth images than regular RGB or HSV

space, and used as a feature to classify the froth images and identify

the bubble health status. MIA or its variations can outperform the

relative redness for a sound description of color variance. It was

also found that loading vectors were better color descriptors than

means and standard deviations of RGB channel intensities.

Take rougher as an example, experiment covering a large range

of operating conditions is performed to reflect the influence of feed

ore. It is mentioned earlier that online videos are collected under

the same resolution, angle, light condition, position, view scale, etc.

Sixteen training video samples are from September 10 to 12, 2008,

whereas eight testing videos are listed in Table I. Loading vectors

for training video images are extracted to build OLS regression

model. By using the obtained empirical regression model, mineral

concentration of flotation pulp can be predicted when given testing

dataset loading vectors.

To illustrate the clustering of the color feature, scatter plots of

principal components are used to display the features in 2D spaces.

Each point with coordinate (x, y) represents the first row of loading

vector pi of each video image. Points having similar color variations

will fall into the identical region of the scatter plot. Thus, specific

region in the scatter plot corresponding to a certain class of images

can be identified. As shown in Figure 8a, the loading vector scatter

plot of 80 images collected on September 10, 2008, is displayed by

80 asterisks. Sixty plus signs show the scatter plot of 60 images on

September 11, 2008. Twenty squares represent the scatter plot of 20

images on September 12, 2008. From each video, 10 image frames

are selected from each video recorded once an hour. At each time

point, A/S grade is measured by XRF analyzer, which is denoted by

the figure near each black circle. The sampling time of eight testing

videos is listed in Table I. It also presents the prediction perform-

ance of the OLS regression. The 458 line in Figure 8b illustrates the

correlation between predicted A/S and measured A/S ratios. Two

dotted lines define the predictions falling within �r of grade analy-

sis standard deviations, which show that the prediction results are

within allowed prediction bias. The OLS regression model can cap-

ture the froth variations very well.

As shown, the prediction results are fascinating. However, there

are situations when the workpoint is shifted or the operational bal-

ance is changed because of the feeding ore variety. Take videos

from September 4, 2008, as an example, the scatter plot of loading

vectors calculated is shown in Figure 8c. The ideal region of score

plot has shifted accordingly, which demands further elaborate

research to be done.

Table I. Prediction performance of the enhanced MIA empirical regression

model in factory field.

Sample Time Observed A/S Predicted A/S Error

2008.09.05.09 1.5800 1.5888 0.0088

2008.09.05.16 1.6615 1.6661 0.0064

2008.09.06.14 1.6869 1.7312 0.0443

2008.09.07.08 1.6167 1.7292 0.1125

2008.09.07.09 1.5926 1.5871 0.0055

2008.09.07.15 2.0764 2.0756 0.0008

2008.09.07.16 2.4238 2.5487 0.1249

2008.09.28.16 1.5875 1.60 0.0125

Figure 8. Scatter plots of extracted loading coefficients and min-

eral grade prediction results of OLS regression. (a) Scatter plots of all
the images in training database. Black circles include 10 image

frames from one video, and the figure beside corresponds to A/S ratio

related to this video sample. Each marker represents the scatter plot
of each RGB image, and marker with different shapes indicate

images are from different dates. (b) Prediction of grade for A/S (mea-

sured versus predicted A/S grade). (c) Scatter plot of new loading

coefficients for videos from September 4, 2008, and corresponding
measured A/S ratio. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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VI. CONCLUSIONS

Based on the fact that color information is closely related to mineral

grades according to human operators’ heuristic knowledge, the

issue of exploring correlation between the froth color variance and

mineral concentration is investigated. Considering the white spot

artifacts on bubble, total variation based highlight inpainting

scheme is applied to enhance bubble images and reconstruct the

underlying intensities for a robust color measurement. MIA is then

applied to extract color features. An OLS regression model is uti-

lized to predict mineral grade, which are of great economy impor-

tance for mineral industry. As shown, the results are promising

when the workpoint is stable. The established relationship provides

an empirical model to predict mineral concentration for industry

process monitor and control. When compared with the MIA

method, the enhanced bubble images are more robust to light

variances.
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